
EMS412U - Python Common Errors Toolkit: “Squashing
Bugs. Not Snakes.”

Muhie Al Haimus Yash Vaghela Ilanthiraiyan Sivagnanamoorthy

Dr. Rehan Shah

September 2025

Contents
1 Introduction 2

2 Developing best practices for coding 2

3 Setting up Python on your own device 2
3.1 Installing Python . 3

4 Syntax errors 3
4.1 Spelling mistakes . 3
4.2 Forgetting to close brackets and quotations . 4
4.3 Indentation . 5
4.4 Forgetting to use commas and colons where necessary . 6
4.5 Interchanging the equality (==) and assignment (=) operators 7
4.6 Addressing multiple errors . 8

5 Runtime errors 10
5.1 Forgetting to import libraries when needed . 10
5.2 Dividing by zero . 11
5.3 Creating infinite loops by forgetting to add a stopping condition (base case) 15
5.4 Undeclared variables . 16
5.5 Concatenating incompatible data types . 17
5.6 Incompatible Casting . 18
5.7 Indexing Errors . 20

6 JupyterHub specific issues 21
6.1 Not running all code cells after starting/restarting the kernel. 21

7 Practice: Find the error and correct it! 22

8 Answers to error practice questions 24

9 Dry run template 30

1

10 I NEED MORE HELP WHAT DO I DO! 31
10.1 Bonus: help() built in python function (method) . 31
10.2 Written Resources . 31
10.3 Video resources . 31
10.4 What’s next? . 31

11 Dry Run Table Answers 32

References 32

Please email m.alhaimus@se23.qmul.ac.uk for any additional comments or corrections for this toolkit.

1 Introduction
Python is an extremely important skill to master and is used extensively throughout your undergraduate
course at Queen Mary University of London. Python is an interpreted programming language, which means
that each line of code is translated into machine code and executed (run) one at a time. When the interpreter
encounters an error, it stops execution and shows an error message along with the specific line where the
issue occurred. On the other hand, compiled languages like C/C++ and Java undergo a compilation process
where the entire code is converted into machine code all at once, which can present its own set of challenges
for beginners. A great explanation of interpreters is available here (watch up to 1:50) [1].

Understanding how code executes by performing a dry run — where you mentally trace through the code
without actually executing it — is a crucial programming skill. This process can be done mentally or by
using a provided template (see Section 11). Dry running code helps you examine how the program will
behave and identify potential issues before running it.

2 Developing best practices for coding
When learning any new skill it is really important to make sure you don’t develop any bad habits. One really
important good programming habit is to include comments at the start of your program. These comments
must include:

• An author

• A date

• A short explanation of the program

Adding comments at the start of your program is helpful for both you and others, as it offers a concise
overview of the code’s purpose. In all the subsequent examples you will see this initial commenting style.

3 Setting up Python on your own device
While not essential for EMS412U, having a local installation of Python can be very beneficial. It enables
offline development and gives you the flexibility to install additional libraries or extensions that can enhance
your programming experience.

2

https://www.youtube.com/watch?v=_C5AHaS1mOA.

3.1 Installing Python
See the video playlist to help install Python and a Code editor on all platforms here [2] or use the guides as
shown below.

Option 1: Install Python interpreter and an Interactive Development Environment (IDE)
Download for Python (Mac, Windows, Linux) [3]
After installing, go into your terminal (for Mac, Linux) or command prompt (for Windows) and type python3;
this starts the Python interpreter.

On Windows, it automatically installs IDLE which is a very basic IDE for Python.

(Mac, Windows, Linux) IDE’s/Code editors to download pick one:
Best choice Visual Studio Code [4] - text editor/IDE
Best IDE Pycharm [5] - you can get a free student licence
Others - Sublime text, Notepad++, and more

Option 2: Install Anaconda distribution
Anaconda distribution is a powerful platform for data science, machine learning, and AI projects. It includes
a Python interpreter, thousands of open-source packages, like numpy and Jupyter Notebook, a package envi-
ronment manager, and also a good IDE called Spyder.

You can easily download it here. [6]

A video to help you install Anaconda can be found on the QMPlus Python IT classes-JupyterHub section.

4 Syntax errors
Errors can look really scary at first, but don’t panic as almost all errors are really easy to fix!
Syntax errors are very easy to fix! You might now be wondering what exactly the word ‘syntax’ means. At
the most basic level, syntax are keywords and operators of any programming language. These never change
so it is really important to make sure that you stick to the rules of using syntax. Some common syntax errors
include:

4.1 Spelling mistakes
Explanation: As you can see below, print is spelled incorrectly. This causes the program to generate a
syntax error. This is the most basic programming mistake you can make.

Figure 1: A program with a spelling mistake that causes the program to crash

3

https://www.youtube.com/playlist?list=PLVTKec-v1Xhsq0B_q3NbLEAafPlh_3XhE
https://www.python.org/downloads/
https://code.visualstudio.com/download
https://www.jetbrains.com/pycharm/
https://www.anaconda.com/download/success
https://www.youtube.com/watch?v=5mDYijMfSzs

Figure 2: Error output showing the syntax error that pint is not defined

Solution: All you need to do is fix the typo pint to print and the program will run correctly.

4.2 Forgetting to close brackets and quotations
Explanation: The program below adds two variables a and b together. However, the print statement contains
a syntax error as the opening bracket has not been closed.

Figure 3: A program that has incomplete brackets which causes the program to crash

Figure 4: Error output showing how the print statement is incomplete

Solution: All that is required to resolve the error here is to close the brackets after a + b.

Explanation: I have now made a new program. That stores the name of the user in the variable name.
However, the program does not run as the quotation mark is missing at the end of the input statement.

4

Figure 5: A program with incomplete quotation marks that causes the program to crash

Figure 6: Error output showing how the string has not been terminated and hence not completed

Solution: A closing quotation mark is required at the end of the input statement.

Key point: It is really important to make it a habit to add an accompanying closed bracket or quotation
mark whenever you open a bracket or quotation mark to eliminate this trivial error.

4.3 Indentation
Explanation: In Python, it is critical to have the correct indentation to avoid basic errors. One indent is either
one press of the tab key or four presses of the space bar. In Python, indentation is used to show where a new
block of code is contained and this must be proceeded by a colon as shown in Figure 7, in which the print
statement is treated as being of the if block of code.

Figure 7: A program that shows the correct application of a colon followed by indent

Output:
Yes, it is Duh
Be careful about the indentation, do not indent your code in the wrong level, since this may not trigger an
error, but cause your program to give unexpected results.

Explanation: Here is another example that demonstrates how the wrong indentation can cause unexpected
outputs.

5

Figure 8: A program that demonstrates the consequences of incorrect indentation

Output:
3
6
9

Solution: In this example, the program runs without any errors. Since the print statement has one indentation
less, the program only prints the last column of the multiplication table.

4.4 Forgetting to use commas and colons where necessary
This is a common mistake, however it is usually easy to spot and correct. These mistakes are most likely to
occur when creating loops, defining specific functions, or creating conditional statements. Here you can see
an example containing various such mistakes.

Explanation: This program shows the implications of forgetting to use a colon after the declaration of a for
statement, leading to an error output.

6

Figure 9: A code snippet showing a missing colon after the for loop declaration

Figure 10: Output showing the syntax error in line 6

Solution: Usually, the output error will highlight if something is missing, so it would be easy to rectify the
mistake. In this case you would need to add a ‘:’ after the for loop declaration.

4.5 Interchanging the equality (==) and assignment (=) operators
In Python, operators are categorised into several groups, including arithmetic (+, -, *, etc.), comparison (>,
<=, !=, etc.), and logical (and, or, not). A double equal sign (==) is an equality comparison operator that
checks if two values are equal and returns either True or False. A single equals sign (=) is an assignment
operator used to assign a value to a variable. These operators are distinct and cannot be used interchangeably.
In other words, = != ==.
For instance, consider this short program that verifies whether the user-entered password (stored in a variable
called password) matches the value in correct password and displays a corresponding message.

7

Figure 11: Code snippet with a mistake using = instead of ==

Explanation: In the above program, the incorrect use of the assignment operator within the condition of the
selection statement results in the following syntax error.

Figure 12: Cell output showing the syntax error on line 10

Solution: All you need to do is navigate to line 10 and replace the assignment operator with the comparison
operator ==.

4.6 Addressing multiple errors
In programs with multiple errors, only the first error is typically shown during the initial run. This error
prevents the program from executing further, but it does not imply that there is just one issue. After fixing the
first error, running the program again usually uncovers additional errors that were previously hidden.

8

Figure 13: Code snippet of a program with an indentation and syntax error

Explanation: Here, there are two errors: first, the line following the function definition is not properly
indented, and second, there is a missing comma in the assignment of the name and age now variables.
However, only the first error is identified during the initial run of the program, as shown below.

Figure 14: Cell output showing the indentation error on line 7

Once this line is correctly indented and the program is run, the cell output will then highlight the syntax error
in the variable assignment.

Figure 15: Cell output showing the syntax error on line 10

Solution: The error is caused by the missing comma between the string Krishni and the integer 20.
Adding a comma will correct the variable definition. The corrected program and its outputs are shown below.

9

Figure 16: Code snippet of the corrected program, along with the output produced

5 Runtime errors
Unlike syntax errors, which occur before the program actually runs, runtime errors happen during the execu-
tion of the program. Although the program will run, it can sometimes crash or just not work as expected. This
could be a mistake as simple as using the wrong mathematical operator like using a (<) symbol in place of a
(>) symbol. Sometimes runtime errors can be very hard to debug so it is very useful to have some strategies
in place to speed up the debugging process.

5.1 Forgetting to import libraries when needed
When solving specific problems using Python, in most cases, you need to use certain libraries since not every
process/function you may want will be directly available to you. However, a common mistake by users is they
assume the functions specific to certain libraries are automatically available. Therefore, it is good practice
to identify all the libraries you may require for your work and import all of them (or the specific functions
from the libraries) at the beginning of your Python code. An example of some code where the library was not
imported correctly:

Explanation: The code below shows an error due to the user importing the required functions from the
math library after calling them rather than before, leading to Python not being able to identify the sin and
pi function.

Figure 17: Code snippet showing incorrect order of declaration of the imported functions

10

Figure 18: An error output showing that the sin function is not identified

Solution: The course of action here would be to move the print statement after ‘line 5’. Doing so, imports
the sin and pi functions from the math library, allowing the code to run.

5.2 Dividing by zero
This is probably the easiest runtime error to detect as it is always causes the program to crash as, obviously,
it is impossible to divide anything by zero. [7]

Explanation: One common place where a division by zero error may occur is when using for loops (counter-
controlled loops). When manipulating the counter that increments/decrements, sometimes, the counter may
become zero due to applying a mathematical operation to it. For example in Figure 19, when the counter i,
reaches 5 the denominator of the fraction becomes zero, causing the program to crash.

11

https://www.youtube.com/watch?v=QVchft8FoYQ

Figure 19: A faulty program that calculates 6
x2−5 between 1-5, and crashes on the fifth iteration

Solution: Division by zero is certainly not possible (thanks to the world of mathematics). Although, there
are ways to prevent the program from crashing entirely. The best solution to this problem is to use an if
statement to catch if the counter ever becomes zero and then skip the division operation on that iteration.

12

Figure 20: Shows how a total program crash can be prevented with a if statement

Explanation: Another place a division by zero error occurs regularly is when handling a user’s input. The
program below has a division by zero error due to the user’s input.

13

Figure 21: A program that shows how a users’ input can cause it to crash

Solution: The easiest way to deal with these errors is to add input validation. This can be done using a
while loop and an if statement.

14

Figure 22: Code with input validation

5.3 Creating infinite loops by forgetting to add a stopping condition (base case)
The simplest case where a user could accidentally create an infinite loop is through the use of the ‘while’
loop functions. An example case consists of using ‘while True:’, this statement in conjunction with the
boolean True, makes it so the while loop runs infinitely until the loop is manually broken by the user.
As shown below, a while statement and the condition a < b (which is always true), makes the loop run
infinitely, since there is never a condition that causes the loop to break. For example:

15

Figure 23: Simple infinite loop case

The infinite loop above can be terminated by simply adding ‘a = a + 1’ before the print(a) line within
the while statement. This makes it so that a < b is only true for 3 loops, hence the loop will end up printing
the numbers 1, 2 and 3. It can be seen that infinite loops can arise from setting inappropriate conditions
on ‘while’ loops, and failing to update loop variables or setting incorrect variables can also cause issues.
Therefore, double-checking your code confirming it makes sense, and no conflicting or improper conditions
exist within your code.

5.4 Undeclared variables
Variables are named memory locations used to store data. Setting up a variable is rather simple; for example,
institution = "QMUL" assigns the text ”QMUL” to the variable named institution. In Python,
variables must be assigned a value before they can be used. Using an undeclared variable will result in a
NameError. For example, in the following code snippet, the variable named city is being called for but
not yet defined!

Figure 24: Code snippet with an error due to the undefined variable city

Explanation: The error occurs because the print(city) line references a variable named city, which
has not been defined earlier in the code. The previous line randomly selects an element from the my cities
list, but the selection is not stored in a variable. It’s evident that the intention was to store this random choice
in the city variable. The following is the error traceback.

16

Figure 25: Python traceback showing a NameError due to the undefined variable reference on line 9

Solution: To fix this, assign the random choice to the city variable before the print statement. In the
following figure, the random selection from my cities is correctly assigned to city, allowing the program
to run without errors (in this case, producing the output “Jaffna”).

Figure 26: Code snippet of the corrected program, along with the output produced

Note: It’s important to follow naming conventions for variables and avoid using Python keywords (e.g.,
print) as identifiers, as this can lead to unexpected behavior and errors in your code.

5.5 Concatenating incompatible data types
Concatenation refers to the process of joining multiple sequence data into a single one, such as joining two
strings. Python does not allow implicit conversion between strings and other types for concatenation, so you
need to do data conversion before concatenating.

Figure 27: Code snippet with a string-integer concatenation error

17

Explanation: In the above program, the attempt to concatenate a string ("You scored ") with an integer
(e.g., 70) directly results in a TypeError.

Figure 28: Python traceback showing a TypeError due to incompatible concatenation on line 6

Solution: To resolve this, convert the non-string operand to a string (in a process known as casting) using the
str() function, as shown here:

Figure 29: Code snippet of the corrected code (with casting before concatenation) and output

Alternative Solution: You can use formatted string literals (f-strings) to make your code more readable, as
they automatically handle any variable conversion.

Figure 30: Code snippet of the corrected code (using f-strings), along with the produced output

5.6 Incompatible Casting
As previously noted, casting involves converting a variable from one data type to another. For example,
the integer value 17 can be converted into a string “17” using the str(17) function, into a float 17.0 using
float(17), and even into a Boolean value True using the bool(17) function. In the following example,
we attempt to convert a non-numeric string to an integer.

18

Figure 31: Code snippet illustrating an attempt to convert a non-numeric string to an integer

Explanation: Here, attempting to cast a non-numeric string into an integer throws a ValueError (i.e., the
function received an argument of the correct type but with an ’inappropriate’ value).

Figure 32: Python traceback showing a ValueError due to incompatible casting on line 7

This issue frequently occurs implicitly when users are prompted for input and casting is performed on that
input in the same line. For example:

Figure 33: Code snippet of program that performs casting immediately following user input

Explanation: In this example, a ValueError is raised since the entered duration is a string literal
that cannot be turned into an integer. While we understand that “twenty-four” represents 24, Python treats
“twenty-four” as a meaningless string, similar to entering “Queen Mary” in response to a question about the
duration of residence. The string cannot be converted into an integer.

19

Figure 34: Python traceback showing a ValueError due to casting a non-numeric string on line 7

Solution: To avoid this error, you can use two approaches:

1. Provide a clearer prompt that specifies an integer is required (e.g., “Please enter a number, such as 24,
not text like ‘twenty-four’“).

2. Use a try-except block to handle exceptions and prompt the user to enter a valid integer if the
input is not a number. When accompanied with a while-loop, this ensures that the user is repeatedly
prompted until a valid integer is provided.

Question: In the above example, would entering 28 crash the program? What about 2O or " 12"?

5.7 Indexing Errors
Consider a simple data structure like an array. Individual elements within this array can be accessed using
their index number. Remember, Python uses zero-based indexing, so the index number of the first element is
0, not 1. If you want to access the 5th element in an array named students, you would use students[4].
The array, students, is populated with 10 elements, where index numbers range from 0 to 9. If we
mistakenly ignore zero-based indexing and use students[5] to access the 5th element (when we actually
meant the 6th element), the code will run but will not produce the intended results. This is known as a logical
error, which is often harder to detect than syntax or runtime errors. Consider the short program:

Figure 35: Code snippet attempting to access an out-of-bounds index in a list

Explanation: Attempting to access the 10th element using students[10], this will result in a runtime
IndexError because index 10 is out of the list’s range.

20

Figure 36: Python traceback showing an IndexError due to the use of index 10 on line 7

Solution: This is an easy fix. Remember, the 10th element has an index of 9, so use:
print("The 10th student in list: ", students[9]) to access it correctly.
Note: Indexing with floating-point numbers (e.g., 5.5), would also crash the program but by generating a
TypeError (rather than an IndexError as in the previous case) because indices for arrays must be of
integer type only!

6 JupyterHub specific issues

6.1 Not running all code cells after starting/restarting the kernel.
This mistake usually leads to variables not being updated/defined, causing errors when the code is run.

Figure 37: Circle - Run current cell, Square - Restart kernel and run all cells

A way to mitigate this is to use the button shown in the red box (37), this restarts the kernel as well as re-
running all cells in the process. However, if you do not want to run all cells, then the button in the red circle
can be used to run selected cells individually.

21

7 Practice: Find the error and correct it!
Q1)Identify the single error in the following code snippet.

Q2) Identify three errors in the following code snippet.

Q3) Identify four errors in the following code snippet.

22

Q4) Identify five errors in the following code snippet.

Q5) Identify four errors in the following code snippet.

23

Q6) Identify five errors in the following code snippet.

8 Answers to error practice questions
Q1) Explanation: The indentation (syntax) error can be solved in two ways:

1. By adding two more white-spaces to contain the print("I like cheese.") line within the if
statement.

24

2. By removing the two white-spaces to contain the print("I like cheese.") line outside of the
bounds of the if statement.

Solution:

Q2) Explanation:

1. The first mistake is that the for statement is missing a colon (:) after its declaration. It would be
corrected by placing a “:” after the for statement, to indicate that the following lines of code belong
to it.

2. The second mistake is the missing indent on the print statement, therefore it does not recognise that
part of the code to belong to the for loop. The correction is to indent the print statement, to show
this block of code belongs to the for loop.

3. The third, similarly to the second, requires indentation, as the “i + 1” line is required within the for
loop block of code to further the loop progress.

Solution:

25

Q3) Explanation:

1. The first mistake is the incorrect order of importing functions, as this leads to the functions not being
recognised and triggering a NameError. The correction would be to move the import statement to
the top of the code, so that it is the first portion of the code to run. Therefore the functions are properly
imported.

2. The second mistake is unnecessary code through using one too many elif statements. So to simplify
the grade calculator function the last elif statement can be replaced with an else statement.

3. The next mistake is a spelling mistake within the return statement, causing a NameError. The
correction would be to rectify the spelling, allowing the code to run without an error occurring.

4. The final mistake is a concatenation error in the print statement, as it is not possible to concatenate
strings and integers using “+”. The correction would be to combine them using commas (,), or to use
an f-string.

Solution:

26

Q4) Explanation:

1. The variable number was misspelled in the condition statement within the first if statement. As a
result, Python raises a NameError, assuming the variable was not declared.

2. The second error occurs on the following line, where the indentation is incorrect. It’s worth noting
that if another statement within the if block was correctly indented, but the line containing found =
True remained misaligned, the code would run without raising an IndentationError. However,
the program’s logic would not function as expected.

3. When the content of the found variable is compared against True, an assignment operator was in-
correctly used instead of the equality operator (==). This throws a SyntaxError.

4. A missing colon after the else.

5. In the last line of the code, an integer (stored in search for) was concatenated with a string. This
incompatible concatenation would have resulted in a TypeError. Note that this issue does not arise
within the if block, where a comma was used to merge the two values, so there was no need for type
casting.

Solution:

27

Q5) Explanation:

1. A missing colon after the) in the function definition.

2. The ˆ symbol was used in place of the ** operator for exponentiation.

3. When the function was called, a string radius value was passed. Since strings cannot be directly
used for mathematical operations, they must be converted to integers. In the solution below, we have
chosen to perform this conversion within the function call, but it could also have been done later, such
as on the line where the area) is calculated.

4. The value returned for the area is of type float. It must be converted to a string before concatenat-
ing it with the other string value in the final print statement. Otherwise, this line would result in a
TypeError.

Solution:

28

Q6) Explanation:

1. The math library was incorrectly imported. The correctly library should be random since its needed
to generate a random number.

2. The second error is that the default guess was incorrectly initialised to 30. This breaks the program’s
logic, because if all other errors were fixed and the random number generated happened to be 30,
the condition in the while loop (guess != number to guess) would immediately evaluate to
False. As a result, the loop wouldn’t run, and the game would end before the user even gets a chance
to make any guesses, incorrectly assuming the number has already been guessed. To fix this, assign
a value to guess that is outside the valid range (e.g., 0-100). A value like -1 would be a reasonable
choice.

3. The third error is that the condition within the while loop is set up incorrectly as guess ==
number to guess. This means the loop only runs when the guess is equal to the number to guess,
which is the opposite of the intended behaviour. To correct this, revise the condition to guess !=
number to guess, ensuring that the loop continues to execute until the guess matches the target
number.

4. The incorrect use of < instead of > in the if statement results in incorrect feedback. Specifically, it
directs the user to guess a number lower than their current guess, when they actually need to guess a
value that is higher.

5. Just like the previous error, using > instead of < leads to incorrect feedback being given to the user.

Solution:

29

9 Dry run template
Below is an example dry run table of a program, with the first iteration completed. Can you finish it? Hint:
You need to add more rows:

Figure 38: Dry run this program, answers can be found on QM+

Line x is x < 3? x % 2 == 0? Output
1 0
2 true
3 true
4 0 is divisible by 2 with no remainder
5 1

2

30

10 I NEED MORE HELP WHAT DO I DO!

10.1 Bonus: help() built in python function (method)
Sometimes if you are slightly unsure of what a function in Python might do, you can use the help method
to gain a quick picture of what it does by using the help method you can do this by calling help(your
method you want help with).
Example:
1# Muhie Al Haimus
2# 4/8/24
3# A Python script to test out the built-in help method
4 help(round)

Output:
1 Help on built-in function round in module builtins:
2

3 round(number, ndigits=None)
4 Round a number to a given precision in decimal digits.
5

6 The return value is an integer if ndigits is omitted or None. Otherwise
7 the return value has the same type as the number. ndigits may be negative.

10.2 Written Resources
Python reference guide. [8] - A great way to learn syntax.
Stack overflow. [9] - A web forum that has answers to almost every problem in Python you may encounter.

10.3 Video resources
Tech With Tim [10] - Introductory Python tutorials., Numpy tutorials.

10.4 What’s next?
Learn Markdown: this is essential to learn to create readable code documents with Juypter notebooks. It is
also really useful for note-taking as it has LaTeX integration for mathematical equations a guide to mark-
down can be found here. [11]

Learn Latex: Allows you to produce mathematical equations and documents like the one you are reading
now! If you are looking to do a Masters or PhD, you should start learning it earlier rather than later so that
you can effortlessly produce good-looking professional documents you can do this online using Overleaf. [12]

Learn OOP: Object-oriented programming (OOP) is an advanced style of programming. It is the standard for
programming in industry for: GUI’s, Games and Robotics. So far, you would have only come across proce-
dural programming which is a really good foundation for understanding the fundamentals of a programming
language. However, it is not really suitable for large code-bases that need to be maintained by large teams as
it creates large amounts of code duplication.

31

https://www.w3schools.com/python/python_syntax.asp
https://stackoverflow.com/
https://www.youtube.com/watch?v=7R-CfL21zIY&list=PLzMcBGfZo4-lMz6bsWzF2tt8K8iZJdLd1&index=1
https://www.youtube.com/watch?v=biLz7KPgHJA&list=PLzMcBGfZo4-ksMuZFqH5LBytux1_p7bcx
https://www.markdownguide.org/cheat-sheet/
https://www.overleaf.com

11 Dry Run Table Answers

Figure 39: Dry run this program, answers can be found on QM+

Line x is x < 3? x % 2 == 0? Output
1 0
2 true
3 true
4 0 is divisible by 2 with no remainder
5 1

2 true

3 false

5 2

2 true

3 true

4 2 is divisible by 2 with no remainder

5 3

2 false

References
[1] Bits and Bytes TVO. Interpreters and Compilers (Bits and Bytes, Episode 6). URL: https://www.

youtube.com/watch?v=_C5AHaS1mOA. (accessed: 19.08.2024).

[2] Muhie Al Haimus. EMS412U: Python install guides. URL: https://www.youtube.com/
playlist?list=PLVTKec-v1Xhsq0B_q3NbLEAafPlh_3XhE. (accessed: 5.09.2024).

[3] Python Software Foundation. Download Python — Python.org. URL: https://www.python.
org/downloads/. (accessed: 21.08.2024).

[4] Visual Studio Code. Download Visual Studio Code - Mac, Linux, Windows. URL: https://code.
visualstudio.com/download. (accessed: 21.08.2024).

[5] Jetbrains s.r.o. Pycharm: The Python IDE for data science and web development. URL: https://
www.jetbrains.com/pycharm/. (accessed: 21.08.2024).

[6] Anaconda Inc. Download Now — Anaconda. URL: https://www.anaconda.com/download/
success. (accessed: 21.08.2024).

[7] Jamie Wagner. Asking Siri To Divide 0 x 0. URL: https://www.youtube.com/watch?v=
QVchft8FoYQ. (accessed: 21.08.2024).

32

https://www.youtube.com/watch?v=_C5AHaS1mOA
https://www.youtube.com/watch?v=_C5AHaS1mOA
https://www.youtube.com/playlist?list=PLVTKec-v1Xhsq0B_q3NbLEAafPlh_3XhE
https://www.youtube.com/playlist?list=PLVTKec-v1Xhsq0B_q3NbLEAafPlh_3XhE
https://www.python.org/downloads/
https://www.python.org/downloads/
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.anaconda.com/download/success
https://www.anaconda.com/download/success
https://www.youtube.com/watch?v=QVchft8FoYQ
https://www.youtube.com/watch?v=QVchft8FoYQ

[8] W3Schools. Python Syntax. URL: https : / / www . w3schools . com / python / python _
syntax.asp. (accessed: 21.08.2024).

[9] Stack Overflow. Stack Overflow. URL: https://stackoverflow.com/. (accessed: 20.08.2024).

[10] Tech With Tim. Python Courses Tutorial. URL: https://www.youtube.com/@TechWithTim.
(accessed: 21.08.2024).

[11] John Gruber. Markdown Cheat Sheet. URL: https://www.markdownguide.org/cheat-
sheet/. (accessed: 21.08.2024).

[12] Overleaf. Overleaf, Online LaTex Editor. URL: https : / / www . overleaf . com. (accessed:
21.08.2024).

33

https://www.w3schools.com/python/python_syntax.asp
https://www.w3schools.com/python/python_syntax.asp
https://stackoverflow.com/
https://www.youtube.com/@TechWithTim
https://www.markdownguide.org/cheat-sheet/
https://www.markdownguide.org/cheat-sheet/
https://www.overleaf.com

	Introduction
	Developing best practices for coding
	Setting up Python on your own device
	Installing Python

	Syntax errors
	Spelling mistakes
	Forgetting to close brackets and quotations
	Indentation
	Forgetting to use commas and colons where necessary
	Interchanging the equality (==) and assignment (=) operators
	Addressing multiple errors

	Runtime errors
	Forgetting to import libraries when needed
	Dividing by zero
	Creating infinite loops by forgetting to add a stopping condition (base case)
	Undeclared variables
	Concatenating incompatible data types
	Incompatible Casting
	Indexing Errors

	JupyterHub specific issues
	Not running all code cells after starting/restarting the kernel.

	Practice: Find the error and correct it!
	Answers to error practice questions
	Dry run template
	I NEED MORE HELP WHAT DO I DO!
	Bonus: help() built in python function (method)
	Written Resources
	Video resources
	What's next?

	Dry Run Table Answers
	References

